Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 20(13): 3135-3148, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954230

RESUMO

We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic ß cells (Fh1ßKO mice) appear normal for 6-8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1ßKO mice led to dysregulated metabolism in ß cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1ßKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fumarato Hidratase/deficiência , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos
2.
Diabetes ; 65(7): 1952-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26993066

RESUMO

The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1 In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca(2+) signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose-induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-ßH2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6 These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy.


Assuntos
Exocitose/fisiologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição SOXC/genética , Animais , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Inativação Gênica , Humanos , Secreção de Insulina , Masculino , Camundongos , Fatores de Transcrição SOXC/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...